来宝网Logo

热门词:生物显微镜 水质分析仪 微波消解 荧光定量PCR 电化学工作站 生物安全柜

AED
现在位置首页>行业专用>植物实验>植物生理学>LCPro-SD便携式智能光合仪
LCPro-SD便携式智能光合仪
LCPro-SD便携式智能光合仪
  • LCPro-SD便携式智能光合仪

LCPro-SD便携式智能光合仪

产品报价:询价

更新时间:2023/10/18 14:06:33

地:英国

牌:

号:LCPro-SD

厂商性质: 生产型,贸易型,服务型,

公司名称: 北京易科泰生态技术有限公司

产品关键词: 智能光合仪   植物光合生理研究  

678
访问人数
0
累计评论


北京易科泰生态技术有限公司 : (13701252261) (13701252261)

(联系我时,请说明是在来宝网上看到的,谢谢!)


LCPro-SD便携式智能光合仪为智能型便携式光合作用测定仪,用以测量植物叶片的光合速率、蒸腾速率、气孔导度等与植物光合作用相关的参数。LCPro-SD便携式智能光合仪应用IRGA(红外气体分析)CO2分析模块和双激光调谐快速响应水蒸气传感器精密测量叶片表面CO2浓度及水分的变化情况来考察叶片与植物光合作用相关的参数。LCPro-SD便携式智能光合仪通过人工光源、CO2控制单元和温度控制单元可以同时精确调控环境条件,从而测定光强、CO2浓度和温度对植物光合系统的影响。LCPro-SD便携式智能光合仪可在高湿度、高尘埃等恶劣环境中使用,具有广泛的适用性。

 

应用领域

  • 植物光合生理研究

  • 植物抗胁迫研究

  • 碳源碳汇研究

  • 植物对全球气候变化的相应及其机理

  • 作物新品种筛选

 

技术特点

  • 配备手持式叶绿素荧光仪,内置了所有通用叶绿素荧光分析实验程序,包括两套荧光淬灭分析程序、3套光响应曲线程序、OJIP-test

  • 完全自动、独立控制环境参数(空气湿度,CO2浓度,温度,光照强度)

  • 精确测量CO2和水蒸汽

  • 便携式设计,体积轻小,仅重4.4Kg

  • 人体工程学设计,舒适型肩带,携带操作非常简便

  • 微型IRGA置于叶室中,大大缩短CO2测量的反应时间

  • 可在恶劣环境下使用,野外工作时间长

  • 可方便互换不同种类的叶室、叶夹

  • 叶室材料经精心选择,以确保CO2及水分的测量精度

  • 数据存储量大,使用即插即拔的SD

  • 维护方便,叶室所有区域都很容易清洁

  • 采用低能耗技术,野外单电池持续工作时间长,可达16小时

  • 实时图形显示功能

技术指标

  • 测量参数:光合速率、蒸腾速率、胞间CO2浓度、气孔导度、叶片温度、叶室温度、光合有效辐射、气压等,可进行光响应曲线和CO2响应曲线测量。

  • 手持叶绿素荧光仪(选配)

  1. 测量参数包括F0FtFmFm’、QY_LnQY_DnNPQQpRfdRARAreaM0SmPIABS/RC50多个叶绿素荧光参数,及3种给光程序的光响应曲线、2种荧光淬灭曲线、OJIP曲线等

  2. 高时间分辨率,可达10万次每秒,自动绘出OJIP曲线并给出26OJIP-test测量参数包括F0FjFiFmFvVjViFm/F0Fv/F0Fv/FmM0AreaFix AreaSmSsNPhi_P0Psi_0Phi_E0Phi-D0Phi_PavPI_AbsABS/RCTR0/RCET0/RCDI0/RC

  • CO2测量范围:0-3000ppm

  • CO2测量分辨率:1ppm

  • CO2采用红外分析,差分开路测量系统,自动置零,自动气压和温度补偿

  • H2O测量范围:0-75 mbar                                

  • H2O测量分辨率:0.1mbar

  • PAR测量范围:0-3000 μmol m-2 s-1,余弦校正

  • 叶室温度:-5 - 50   精度:±0.2

  • 叶片温度:-5 - 50

  • 空气泵流量:100 - 500ml / min

  • CO2控制:由内部CO2供应系统提供,最高达2000ppm

  • H2O控制:可高于或低于环境条件

  • 温度控制:由微型peltier元件控制,宽叶叶室可高于或低于环境14,其他叶室为10

  • PAR控制:由高效、低热红/LED阵列单元控制,最高2000μmol m-2 s-1 (针叶最高1500μmol m-2 s-1

  • 可选配多种带有光源的可控温叶室、叶夹

  1. 宽叶叶室:测量面积6.25cm2,适用于阔叶

  2. 窄叶叶室:测量面积5.2cm2,适用于条形叶

  3. 针叶叶室:适用于簇状针叶

  4. 小型叶叶室:叶室直径为16.5mm,适用于叶片直径在11mm16mm之间的叶片

  5. 小型草本植物群落测量室:测量高度低于55mm的整株草本植物光合作用

  6. 整株拟南芥测量室

  7. 土壤呼吸室:体积为1L,含土壤温度传感器

  8. 果实测量室:两部分组成,上部透明、下部为体积为1L

  9. 荧光仪联用适配器:适用于连接多种叶绿素荧光仪

 

小型叶叶室

小型草本植物群落测量室

整株拟南芥测量室

果实测量室

荧光仪联用适配器

宽叶叶室

窄叶叶室

针叶叶室

土壤呼吸室

 

 

 

 

 

 

 

 

 

 

 

 

  • 数据存储:1G SD卡,可存储16,000,000组典型数据

  • 数据输出:Mini-BUSB接口,RS232九针D型标准接口,采用38400波特率与打印机或PC通讯

  • 供电系统:内置12V 7AH蓄电池,可持续工作至16小时,智能充电器

  • 尺寸:主机230×110×170mm,测量手柄300×80×75mm

  • 重量:主机4.4Kg,测量手柄0.8Kg

  • 操作环境:545

典型应用

1. Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Plant and Soil, 328(1): 57-69

本研究对不同类型的抗草甘膦大豆进行草甘膦处理,发现大豆的各项光合参数,包括叶绿素含量、气孔导度、光合速率和蒸腾速率都有所降低。

 

2. Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex, Seco R. et al. 2011, Acta Physiologiae Plantarum, 33(6): 2413-2422

本研究设计了一个气室装置,用以研究常青栎(Quercus ilex)在剪去部分叶片(模拟啃食)和加入甲醇(模拟附近其他植物被啃食时释放的信号)时的生理变化,发现两种处理都提高了植物的净光合速率。

 

 

 

 

 

 

 

 

 

 

 

 

 

产地:英国

参考文献(近三年发表近200SCI文章,仅列出部分代表性文献)

  1. Diurnal changes in leaflet gas exchange, water status and antioxidant responses in Carapa guianensis plants under water-deficit conditions, Silva Carvalho K, et al. 2013, Acta Physiologiae Plantarum, 35(1), 13-21

  2. Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization, Dias M C, et al. 2013, Biologia Plantarum, 57(1):33-40

  3. Frankincense tapping reduced photosynthetic carbon gain in Boswellia papyrifera (Burseraceae) trees, Mengistu T, et al. 2012, Forest Ecology and Management, 278, 18

  4. Impacts of leafroll-associated viruses (GLRaV-1 and -3) on the physiology of the Portuguese grapevine cultivar Touriga Nacionalgrowing under field conditions, Moutinho-Pereira J, et al. 2012, 160(3), 237-249

  5. Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis, Blanch J. S. et al. 2011, Plant biology, DOI: 10.1111/j.1438-8677.2011.00492.x

  6. Photosynthesis by six Portuguese maize cultivars during drought stress and recovery, Carvalho RC. et al. 2011, Acta Physiologiae Plantarum, 33(2): 359-374

  7. Hydrogen peroxide spraying alleviates drought stress in soybean plants, Ishibashi Y. et al. 2011, Journal of plant physiology, 168(13): 1562-1567

  8. Leaf gas exchange in the frankincense tree (Boswellia papyrifera) of African dry woodlands, Mengistu T. et al. 2011, Tree Physiology, 31(7): 740-750

  9. Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex, Seco R. et al. 2011, Acta Physiologiae Plantarum, 33(6): 2413-2422

  10. Is distribution of hydraulic constraints within tree crowns reflected in photosynthetic water-use efficiency? An example of Betula pendula, Sellin A. et al. 2011, Ecological research, 25(1): 173-183

  11. A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek, Sengupta D. et al. 2011, Planta, 233(6): 1111-1127

  12. Differences in stomatal responses and root to shoot signalling between two grapevine varieties subjected to drought, Beis A. et al. 2010, Functional Plant Biology, 37(2): 139-146

  13. The evaluation of photosynthetic parameters in maize inbred lines subjected to water deficiency: Can these parameters be used for the prediction of performance of hybrid progeny? Holá D. et al. 2010,  Photosynthetica 48(4): 545-558

  14. Photosynthesis, water-use efficiency and δ13C of five cowpea genotypes grown in mixed culture and at different densities with sorghum, Makoi J.H.J.R. et al. 2010, Photosynthetica, 48(1): 143-155

  15. Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species, Cuesta B. et al. 2010, Forest Ecology and Management, 260(1): 71-78

  16. Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Plant and Soil, 328(1): 57-69

  17. Effect of glyphosate on symbiotic N2 fixation and nickel concentration in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Applied Soil Ecology, 44(2), 176-180