美国flexcell细胞力学设备应用文献大全—— (点击查看flexcell细胞拉应力、压应力、流体切应力、组织工程三维培养系统学设备)
世联博研(北京)科技有限公司独家授权代理美国flexcell全系列产品 单位地址:北京市丰台区角门南华12-1507,
邮编:100068 全国客服热线:400-650-8506,传真:010-67520703
目录
Flexcell FX-5000细胞牵张拉伸培养系统应用文献
膀胱(Bladder)细胞牵张拉伸应力应用文献
膀胱平滑肌细胞(Bladder smooth muscle cells)细胞牵张拉伸应力应用文献
尿路上皮及尿路上皮细胞(Urothelial & uroepithelial cells) 细胞牵张拉伸应力应用文献
骨(Bone)细胞牵张拉伸应力应用文献
心脏血管(Cardio vasculature)细胞牵张拉伸应力应用文献
心肌细胞和成纤维细胞(Cardiomyocytes and fibroblasts)牵张拉伸应力应用文献
心血管内皮细胞(Cardiovascular endothelial cells)牵张拉伸应力应用文献
心血管平滑肌细胞(Cardiovascular smooth muscle cells)牵张拉伸应力应用文献
其他心血管细胞(Other cardiovascular cells)细胞牵张拉伸应力应用文献
软骨(Cartilage)细胞牵张拉伸应力应用文献
关节软骨细胞(Articular chondrocytes)细胞牵张拉伸应力应用文献
其他的软骨细胞(Other cartilage cells)细胞牵张拉伸应力应用文献
皮肤成纤维细胞(Dermal Fibroblasts)细胞牵张拉伸应力应用文献
内皮细胞(Endothelial cells)细胞牵张拉伸应力应用文献
心血管内皮细胞(Cardiovascular endothelial cells)细胞牵张拉伸应力应用文献
肺动脉内皮细胞(Pulmonary endothelial cells)细胞牵张拉伸应力应用文献
其他的内皮细胞(Other endothelial cells)细胞牵张拉伸应力应用文献
上皮细胞(Epithelial Cells)细胞牵张拉伸应力应用文献
Caco-2肠上皮细胞(Caco-2 intenstinal epithelial cells)细胞牵张拉伸应力应用文献
眼睛的上皮细胞(Eye epithelial cells)细胞牵张拉伸应力应用文献
胃上皮细胞(Gastric epithelial cells)细胞牵张拉伸应力应用文献
肺上皮细胞(Pulmonary epithelial cells)细胞牵张拉伸应力应用文献
肾小管上皮细胞(Renal epithelial cells)细胞牵张拉伸应力应用文献
其他上皮细胞(Other epithelial cells)细胞牵张拉伸应力应用文献
眼睛(Eye)细胞牵张拉伸应力应用文献
眼睛的上皮细胞(Eye epithelial cells)细胞牵张拉伸应力应用文献
眼小梁细胞(Trabecular meshwork cells)细胞牵张拉伸应力应用文献
牙龈成纤维细胞(Gingival Fibroblasts)细胞牵张拉伸应力应用文献
椎间盘(Intervertebral Disc)细胞牵张拉伸应力应用文献
角质形成细胞(Keratinocytes)细胞牵张拉伸应力应用文献
肾(Kidney)细胞牵张拉伸应力应用文献
肾小球膜细胞(Mesangial cells)细胞牵张拉伸应力应用文献
肾小管上皮细胞(Renal epithelial cells)细胞牵张拉伸应力应用文献
韧带(Ligament)细胞牵张拉伸应力应用文献
牙周膜(Periodontal ligament)细胞牵张拉伸应力应用文献
膝关节韧带(Knee ligaments)细胞牵张拉伸应力应用文献
其他韧带细胞(Other ligament cells)牵张拉伸应力应用文献
肝脏(Liver)细胞牵张拉伸应力应用文献
肺(Lung)细胞牵张拉伸应力应用文献
肺泡巨噬细胞(Alveolar macrophages)牵张拉伸应力应用文献
肺成纤维细胞(Lung fibroblasts)牵张拉伸应力应用文献
间皮细胞(Mesothelial cells)牵张拉伸应力应用文献
肺动脉内皮细胞(Pulmonary endothelial cells)牵张拉伸应力应用文献
肺上皮细胞(Pulmonary epithelial cells)牵张拉伸应力应用文献
肺动脉平滑肌细胞(Pulmonary smooth muscle cells)牵张拉伸应力应用文献
其他肺部细胞(Other pulmonary cells)牵张拉伸应力应用文献
半月板(Meniscus)细胞牵张拉伸应力应用文献
神经元,星形胶质细胞,及脑(Neurons'' Astrocytes'' & Brain)细胞牵张拉伸应力应用文献
骨骼肌(Skeletal Muscle)细胞牵张拉伸应力应用文献
平滑肌细胞(Smooth Muscle Cells)细胞牵张拉伸应力应用文献
膀胱平滑肌细胞(Bladder smooth muscle cells)牵张拉伸应力应用文献
心血管平滑肌细胞(Cardiovascular smooth muscle cells)牵张拉伸应力应用文献
肺动脉平滑肌细胞(Pulmonary smooth muscle cells)牵张拉伸应力应用文献
子宫/子宫肌层平滑肌细胞(Uterine/myometrial smooth muscle cells)牵张拉伸应力应用文献
其他平滑肌细胞(Other smooth muscle cells)牵张拉伸应力应用文献
基质干细胞/内皮祖细胞/干细胞(Stromal/ Progenitor/ Stem Cells)牵张拉伸应力应用文献
滑膜(Synovial)细胞牵张拉伸应力应用文献
肌腱(Tendon)细胞牵张拉伸应力应用文献
子宫(Uterine)细胞牵张拉伸应力应用文献
子宫/子宫肌层平滑肌细胞(Uterine/myometrial smooth muscle cells)牵张拉伸应力应用文献
其他类型的细胞(Other Cell Types)牵张拉伸应力应用文献
点评与评论文章(Reviews & Commentaries)细胞牵张拉伸应力应用文献
UNIFLEX®和单轴拉伸(UNIFLEX®AND UNIAXIAL TENSION)细胞牵张拉伸应力应用文献
Tissue Train®Flexcell FX-5000TT组织工程三维牵张拉伸培养系统应用文献
张力系统应变分布(TENSION SYSTEM STRAIN PROFILES)细胞牵张拉伸应力应用文献
张力系统中的应用(APPLICATION OF TENSION SYSTEM)细胞牵张拉伸应力应用文献
BIOPRESS和Flexcell FX-5000C细胞组织三维培养物压应力加载培养系统(BIOPRESS AND COMPRESSION SYSTEM)应用文献
细胞压应力培养系统中的应用(APPLICATION OF COMPRESSION SYSTEM)细胞压缩系统中的应用文献
FLEXFLOW Stream®流体剪切力系统(FLEXFLOW AND STREAMER®FLUID SHEAR STRESS SYSTEMS)应用文献
培养板和载玻片中的应用(APPLICATION OF CULTURE PLATES AND SLIDES)细胞牵张拉伸应力应用文献
客户改性单位(CUSTOMER-MODIFIED UNITS)细胞牵张拉伸应力应用
美国专利(U.S. PATENTS)细胞牵张拉伸应力应用
国际专利(INTERNATIONAL PATENTS)细胞牵张拉伸应力应用
TENSION SYSTEM
(categorized by system'' tissue'' and/or cell type)
1. Adam RM'' Eaton SH'' Estrada C'' Nimgaonkar A'' Shih SC'' Smith LE'' Kohane IS'' Bagli D'' Freeman MR. Mechanical stretch is a highly selective regulator of gene expression in human bladder smooth muscle cells. Physiol Genomics 20(1):36-44'' 2004.
2. Adam RM'' Roth JA'' Cheng HL'' Rice DC'' Khoury J'' Bauer SB'' Peters CA'' Freeman MR. Signaling through PI3K/Akt mediates stretch and PDGF-BB-dependent DNA synthesis in bladder smooth muscle cells. J Urol 169(6):2388-2393'' 2003.
3. Aitken KJ'' Block G'' Lorenzo A'' Herz D'' Sabha N'' Dessouki O'' Fung F'' Szybowska M'' Craig L'' Bagli DJ.Mechanotransduction of extracellular signal-regulated kinases 1 and 2 mitogen-activated protein kinase activity in smooth muscle is dependent on the extracellular matrix and regulated by matrix metalloproteinases. Am J Pathol 169(2):459-470'' 2006.
4. Aitken KJ'' Tolg C'' Panchal T'' Leslie B'' Yu J'' Elkelini M'' Sabha N'' Tse DJ'' Lorenzo AJ'' Hassouna M'' Bgli DJ. Mammalian target of rapamycin (mTOR) induces proliferation and de-differentiation responses to three coordinate pathophysiologic stimuli (mechanical strain'' hypoxia'' and extracellular matrix remodeling) in rat bladder smooth muscle. Am J Pathol 176(1):304-319'' 2010. Epub 2009 Dec 17.
5. Chaqour B'' Yang R'' Sha Q. Mechanical stretch modulates the promoter activity of the profibrotic factor CCN2 through increased actin polymerization and NF-κB activation. J Biol Chem 281(29):20608-20622'' 2006.
6. Estrada CR'' Adam RM'' Eaton SH'' Bgli DJ'' Freeman MR. Inhibition of EGFR signaling abrogates smooth muscle proliferation resulting from sustained distension of the urinary bladder. Lab Invest 86(12):1293-1302'' 2006.
7. Galvin DJ'' Watson RW'' Gillespie JI'' Brady H'' Fitzpatrick JM. Mechanical stretch regulates cell survival in human bladder smooth muscle cells in vitro. Am J Physiol Renal Physiol 283(6):F1192-F1199'' 2002.
8. Halachmi S'' Aitken KJ'' Szybowska M'' Sabha N'' Dessouki S'' Lorenzo A'' Tse D'' Bagli DJ. Role of signal transducer and activator of transcription 3 (STAT3) in stretch injury to bladder smooth muscle cells. Cell Tissue Res 326(1):149-158'' 2006.
9. Hubschmid U'' Leong-Morgenthaler PM'' Basset-Dardare A'' Ruault S'' Frey P. In vitro growth of human urinary tract smooth muscle cells on laminin and collagen type I-coated membranes under static and dynamic conditions. Tissue Engineering 11(1-2):161-171'' 2005.
10. Kushida N'' Kabuyama Y'' Yamaguchi O'' Homma Y. Essential role for extracellular Ca2+ in JNK activation by mechanical stretch in bladder smooth muscle cells. Am J Physiol Cell Physiol 281(4):C1165-C1172'' 2001.
11. Nguyen HT'' Adam RM'' Bride SH'' Park JM'' Peters CA'' Freeman MR. Cyclic stretch activates p38 SAPK2-'' ErbB2-'' and AT1-dependent signaling in bladder smooth muscle cells. Am J Physiol Cell Physiol 279(4):C1155-C1167'' 2000.
12. Orsola A'' Adam RM'' Peters CA'' Freeman MR. The decision to undergo DNA or protein synthesis is determined by the degree of mechanical deformation in human bladder muscle cells. Urology 59(5):779-783'' 2002.
13. Orsola A'' Estrada CR'' Nguyen HT'' Retik AB'' Freeman MR'' Peters CA'' Adam RM. Growth and stretch response of human exstrophy bladder smooth muscle cells: molecular evidence of normal intrinsic function. BJU Int 95(1):144-148'' 2005.
14. Park JM'' Adam RM'' Peters CA'' Guthrie PD'' Sun Z'' Klagsbrun M'' Freeman MR. AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. Am J Physiol Cell Physiol 277:C294-C301'' 1999.
15. Park JM'' Borer JG'' Freeman MR'' Peters CA. Stretch activates heparin-binding EGF-like growth factor expression in bladder smooth muscle cells. Am J Physiol Cell Physiol 275:C1247-C1254'' 1998.
16. Park JM'' Yang T'' Arend LJ'' Schnermann JB'' Peters CA'' Freeman MR'' Briggs JP. Obstruction stimulates COX-2 expression in bladder smooth muscle cells via increased mechanical stretch. Am J Physiol Renal Physiol 276:F129-F136'' 1999.
17. Persson K'' Sando JJ'' Tuttle JB'' Steers WD. Protein kinase C in cyclic stretch-induced nerve growth factor production by urinary tract smooth muscle cells. Am J Physiol Cell Physiol 269:C1018-C1024'' 1995.
18. Steers WD'' Broder SR'' Persson K'' Bruns DE'' Ferguson JE 2nd'' Bruns ME'' Tuttle JB. Mechanical stretch increases secretion of parathyroid hormone-related protein by cultured bladder smooth muscle cells. J Urol 160(3 Pt 1):908-912'' 1998.
19. Upadhyay J'' Aitken KJ'' Damdar C'' Bolduc S'' Bagli DJ. Integrins expressed with bladder extracellular matrix after stretch injury in vivo mediate bladder smooth muscle cell growth in vitro. J Urol 169(2):750-755'' 2003.
20. Yang R'' Amir J'' Liu H'' Chaqour B. Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiol Genomics 36(1):1-14'' 2008. Epub 2008 Oct 14.
21. Yu G'' Bo S'' Xiyu J'' Enqing X. Effect of bladder outlet obstruction on detrusor smooth muscle cell: an in vitro study. Journal of Surgical Research 114(2):202-209'' 2003.
22. Zhou D'' Herrick DJ'' Rosenbloom J'' Chaqour B. Cyr61 mediates the expression of VEGF'' αv-integrin'' and α-actin genes through cytoskeletally based mechanotransduction mechanisms in bladder smooth muscle cells. J Appl Physiol 98(6):2344-2354'' 2005.
23. Jerde TJ'' Mellon WS'' Bjorling DE'' Nakada SY. Evaluation of urothelial stretch-induced cyclooxygenase-2 expression in novel human cell culture and porcine in vivo ureteral obstruction models. J Pharmacol Exp Ther 317(3):965-972'' 2006.
24. Jerde TJ'' Mellon WS'' Bjorling DE'' Checura CM'' Owusu-Ofori K'' Parrish JJ'' Nakada SY. Stretch induction of cyclooxygenase-2 expression in human urothelial cells is calcium- and protein kinase C zeta-dependent. Mol Pharmacol 73(1):18-26'' 2008. Erratum in: Mol Pharmacol 74(2):539'' 2008.
25. Sun Y'' Chai TC. Effects of dimethyl sulphoxide and heparin on stretch-activated ATP release by bladder urothelial cells from patients with interstitial cystitis. BJU Int 90(4):381-385'' 2002.
26. Sun Y'' Chai TC. Up-regulation of P2X3 receptor during stretch of bladder urothelial cells from patients with interstitial cystitis. J Urol 171(1):448-452'' 2004.
27. Sun Y'' Keay S'' De Deyne PG'' Chai TC. Augmented stretch activated adenosine triphosphate release from bladder uroepithelial cells in patients with interstitial cystitis. Journal of Urology 166(5):1951-1956'' 2001.
28. Sun Y'' Keay S'' DeDeyne P'' Chai T. Stretch-activated release of adenosine triphosphate by bladder uroepithelia is augmented in interstitial cystitis [abstract]. Urology 57(6 Suppl 1):131'' 2001.
29. Sun Y'' MaLossi J'' Jacobs SC'' Chai TC. Effect of doxazosin on stretch-activated adenosine triphosphate release in bladder urothelial cells from patients with benign prostatic hyperplasia. Urology 60(2):351-356'' 2002.
1. Aguirre JI'' Plotkin LI'' Gortazar AR'' Millan MM'' O’Brien CA'' Manolagas SC'' Bellido T. A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem 282(35):25501–25508'' 2007.
2. Bellido T'' Plotkin LI. Detection of apoptosis of bone cells in vitro. Methods in
Molecular Biology'' Vol. 455: Osteoporosis: Methods and Protocols. Edited by Westendorf JJ. Humana Press: Totowa'' 51-75'' 2008.
3. Bhatt KA'' Chang EI'' Warren SM'' Lin SE'' Bastidas N'' Ghali S'' Thibboneir A'' Capla JM'' McCarthy JG'' Gurtner GC. Uniaxial mechanical strain: an in vitro correlate to distraction osteogenesis. J Surg Res 143(2):329-36'' 2007. Epub 2007 Oct 22.
4. Boutahar N'' Guignandon A'' Vico L'' Lafage-Proust MH. Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation. J Biol Chem 279(29):30588-30599'' 2004.
5. Buckley MJ'' Banes AJ'' Jordan RD. The effects of mechanical strain on osteoblasts in vitro. J Oral Maxillofac Surg 48(3):276-282'' 1990.
6. Buckley MJ'' Banes AJ'' Levin LG'' Sumpio BE'' Sato M'' Jordan R'' Gilbert J'' Link GW'' Tran Son Tay R. Osteoblasts increase their rate of division and align in response to cyclic'' mechanical tension in vitro. Bone Miner 4(3):225-236'' 1988.
7. Calvalho RS'' Bumann A'' Schwarzer C'' Scott E'' Yen EH. A molecular mechanism of integrin regulation from bone cells stimulated by orthodontic forces. Eur J Orthod 18(3):227-235'' 1996.
8. Carvalho RS'' Bumann A'' Schwarzer C'' Scott E'' Yen HK. A molecular mechanism of integrin regulation from bone cells stimulated by orthodontic forces. The European Journal of Orthodontics 18(1):227-235'' 1996.
9. Carvalho RS'' Scott JE'' Suga DM'' Yen EH. Stimulation of signal transduction pathways in osteoblasts by mechanical strain potentiated by parathyroid hormone. J Bone Miner Res 9(7):999-1011'' 1994.
10. Carvalho RS'' Scott JE'' Yen EH. The effects of mechanical stimulation on the distribution of β1 integrin and expression of β1-integrin mRNA in TE-85 human osteosarcoma cells. Arch Oral Biol 40(3):257-264'' 1995.
11. Case N'' Ma M'' Sen B'' Xie Z'' Gross TS'' Rubin J. β-catenin levels influence rapid mechanical responses in osteoblasts. J Biol Chem 283(43):29196-29205'' 2008. Epub 2008 Aug 22.
12. Chen X'' Macica CM'' Ng KW'' Broadus AE. Stretch-induced PTH-related protein gene expression in osteoblasts. J Bone Miner Res20(8):1454-61'' 2005.
13. Cillo JE Jr'' Gassner R'' Koepsel RR'' Buckley MJ. Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 90(2):147-154'' 2000.
14. Duncan RL'' Hruska KA. Chronic'' intermittent loading alters mechanosensitive channel characteristics in osteoblast-like cells. Am J Physiol Renal Physiol 267:F909-F916'' 1994.
15. Fan X'' Rahnert JA'' Murphy TC'' Nanes MS'' Greenfield EM'' Rubin J. Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol 207(2):454-460'' 2006.
16. Faure C'' Linossier MT'' Malaval L'' Lafage-Proust MH'' Peyroche S'' Vico L'' Guignandon A. Mechanical signals modulated vascular endothelial growth factor-A (VEGF-A) alternative splicing in osteoblastic cells through actin polymerisation. Bone 42(6):1092-1101'' 2008. Epub 2008 Feb 29.
17. Faure C'' Vico L'' Tracqui P'' Laroche N'' Vanden-Bossche A'' Linossier MT'' Rattner A'' Guignandon A. Functionalization of matrices by cyclically stretched osteoblasts through matrix targeting of VEGF. Biomaterials 31(25):6477-6484'' 2010. Epub 2010 Jun 11.
18. Geng WD'' Boskovic G'' Fultz ME'' Li C'' Niles RM'' Ohno S'' Wright GL. Regulation of expression and activity of four PKC isozymes in confluent and mechanically stimulated UMR-108 osteoblastic cells. J Cell Physiol 189(2):216-228'' 2001.
19. Granet C'' Boutahar N'' Vico L'' Alexandre C'' Lafage-Proust MH. MAPK and SRC-kinases control EGR-1 and NF-κB inductions by changes in mechanical environment in osteoblasts. Biochem Biophys Res Commun 284(3):622-631'' 2001.
20. Granet C'' Vico AG'' Alexandre C'' Lafage-Proust MH. MAP and src kinases control the induction of AP-1 members in response to changes in mechanical environment in osteoblastic cells. Cellular Signaling 14(8):679-688'' 2002.
21. Grimston SK'' Screen J'' Haskell JH'' Chung DJ'' Brodt MD'' Silva MJ'' Civitelli R. Role of connexin43 in osteoblast response to physical load. Ann N Y Acad Sci 1068:214-224'' 2006.
22. Guignandon A'' Akhouayri O'' Usson Y'' Rattner A'' Laroche N'' Lafage-Proust MH'' Alexandre C'' Vico L. Focal contact clustering in osteoblastic cells under mechanical stresses: microgravity and cyclic deformation. Cell Commun Adhes 10(2):69-83'' 2003.
23. Guignandon A'' Boutahar N'' Rattner A'' Vico L'' Lafage-Proust MH. Cyclic strain promotes shuttling of PYK2/Hic-5 complex from focal contacts in osteoblast-like cells. Biochem Biophys Res Commun 343(2):407-14'' 2006.
24. Hara F'' Fukuda K'' Asada S'' Matsukawa M'' Hamanishi C. Cyclic tensile stretch inhibition of nitric oxide release from osteoblast-like cells is both G protein and actin-dependent. Journal of Orthopaedic Research 19(1):126-131'' 2001.
25. Hara F'' Fukuda K'' Ueno M'' Hamanishi C'' Tanaka S. Pertussis toxin-sensitive G proteins as mediators of stretch-induced decrease in nitric-oxide release of osteoblast-like cells. J Orthop Res 17(4):593-597'' 1999.
26. Hens JR'' Wilson KM'' Dann P'' Chen X'' Horowitz MC'' Wysolmerski JJ. TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro. J Bone Miner Res 20(7):1103-1113'' 2005.
27. Ho AM'' Marker PC'' Peng H'' Quintero AJ'' Kingsley DM'' Huard J. Dominant negative Bmp5 mutation reveals key role of BMPs in skeletal response to mechanical stimulation. BMC Dev Biol 8:35'' 2008.
28. Jansen JH'' Weyts FA'' Westbroek I'' Jahr H'' Chiba H'' Pols HA'' Verhaar JA'' van Leeuwen JP'' Weinans H. Stretch-induced phosphorylation of ERK1/2 depends on differentiation stage of osteoblasts. Journal of Cellular Biochemistry 93:542–551'' 2004.
29. Kim DW'' Lee HJ'' Karmin JA'' Lee SE'' Chang SS'' Tolchin B'' Lin S'' Cho SK'' Kwon A'' Ahn JM'' Lee FY. Mechanical loading differentially regulates membrane-bound and soluble RANKL availability in MC3T3-E1 cells. Ann N Y Acad Sci 1068:568-72.'' 2006.
30. Knoll B'' McCarthy TL'' Centrella M'' Shin J. Strain-dependent control of transforming growth factor- β function in osteoblasts in an in vitro model: biochemical events associated with distraction osteogenesis. Plastic & Reconstructive Surgery 116(1):224-233'' 2005.
31. Li L'' Chen M'' Deng L'' Mao Y'' Wu W'' Chang M'' Chen H. The effect of mechanical stimulation on the expression of α2'' β1'' β3 integrins and the proliferation'' synthetic function in rat osteoblasts. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 20(2):187-192'' 2003.
32. Li L'' Deng L'' Chen M'' Wu W'' Mao Y'' Chen H. The effect of mechanical stimulation on the proliferation and synthetic function of osteoblasts from osteoporotic rat. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 21(3):341-346'' 349'' 2004.
33. Li X'' Zhang XL'' Shen G'' Tang GH. Effects of tensile forces on serum deprivation-induced osteoblast apoptosis: expression analysis of caspases'' Bcl-2'' and Bax. Chin Med J (Engl) 125(14):2568-2573'' 2012.
34. Li Y'' Tang L'' Duan Y'' Ding Y. Upregulation of MMP-13 and TIMP-1 expression in response to mechanical strain in MC3T3-E1 osteoblastic cells. BMC Res Notes 3:309'' 2010.
35. Liegibel UM'' Sommer U'' Tomakidi P'' Hilscher U'' Van Den Heuvel L'' Pirzer R'' Hillmeier J'' Nawroth P'' Kasperk C.Concerted action of androgens and mechanical strain shifts bone metabolism from high turnover into an osteoanabolic mode. J Exp Med196(10):1387-1392'' 2002.
36. Lima F'' Vico L'' Lafage-Proust MH'' van der Saag P'' Alexandre C'' Thomas T. Interactions between estrogen and mechanical strain effects on U2OS human osteosarcoma cells are not influenced by estrogen receptor type. Bone 35(5):1127-1135'' 2004.
37. Liu X'' Zhang X'' Luo ZP. Strain-related collagen gene expression in human osteoblast-like cells. Cell Tissue Res 322(2):331-334'' 2005.
38. Narutomi M'' Nishiura T'' Sakai T'' Abe K'' Ishikawa H. Cyclic mechanical strain induces interleukin-6 expression via prostaglandin E2 production by cyclooxygenase-2 in MC3T3-E1 osteoblast-like cells. J Oral Biosci 49(1):65-73'' 2007.
39. Miyauchi A'' Gotoh M'' Kamioka H'' Notoya K'' Sekiya H'' Takagi Y'' Yoshimoto Y'' Ishikawa H'' Chihara K'' Takano-Yamamoto T'' Fujita T'' Mikuni-Takagaki Y. αVβ3 integrin ligands enhance volume-sensitive calcium influx in mechanically stretched osteocytes. J Bone Miner Metab 24(6):498-504'' 2006.
40. Motokawa M'' Kaku M'' Tohma Y'' Kawata T'' Fujita T'' Kohno S'' Tsutsui K''
Ohtani J'' Tenjo K'' Shigekawa M'' Kamada H'' Tanne K. Effects of cyclic tensile forces on the expression of vascular endothelial growth factor (VEGF) and macrophage-colony-stimulating factor (M-CSF) in murine osteoblastic MC3T3-E1 cells. J Dent Res 84(5):422-427'' 2005. 41. Myers KA'' Rattner JB'' Shrive NG'' Hart DA. Osteoblast-like cells and fluid flow: cytoskeleton-dependent shear sensitivity. Biochem Biophys Res Commun 364(2):214-219'' 2007. Epub 2007 Oct 4.
42. Plotkin LI'' Mathov I'' Aguirre JI'' Parfitt AM'' Manolagas SC'' Bellido T. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins'' Src kinases'' and ERKs. Am J Physiol Cell Physiol 289(3):C633-643'' 2005.
43. Qi J'' Chi L'' Faber J'' Koller B'' Banes AJ. ATP reduces gel compaction in osteoblast-populated collagen gels. J Appl Physiol102(3):1152-60'' 2007.
44. Qi J'' Chi L'' Wang J'' Sumanasinghe R'' Wall M'' Tsuzaki M'' Banes AJ. Modulation of collagen gel compaction by extracellular ATP is MAPK and NF-κB pathways dependent. Exp Cell Res 315(11):1990-2000'' 2009. Epub 2009 Feb 23.
45. Rath B'' Springorum HR'' Deschner J'' Luring C'' Tingart M'' Grifka J'' Schaumburger J'' Grassel S. Regulation of gene expression in articular cells is influenced by biomechanicalloading. Central European Journal of Medicine 2012'' doi: 10.2478/s11536-012-0008-x.
46. Robinson JA'' Chatterjee-Kishore M'' Yaworsky PJ'' Cullen DM'' Zhao W'' Li C'' Kharode Y'' Sauter L'' Babij P'' Brown EL'' Hill AA'' Akhter MP'' Johnson ML'' Recker RR'' Komm BS'' Bex FJ. Wnt/β-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281(42):31720-31728'' 2006.
47. Sano S'' Okawa A'' Nakajima A'' Tahara M'' Fujita K'' Wada Y'' Yamazaki M'' Moriya H'' Sasho T. Identification of Pip4k2β as a mechanical stimulus responsive gene and its expression during musculoskeletal tissue healing. Cell Tissue Res 323(2):245-252'' 2006.
48. Siddhivarn C'' Banes A'' Champagne C'' Riche EL'' Weerapradist W'' Offenbacher S. Prostaglandin D2 pathway and peroxisome proliferator-activated receptor γ-1 expression are induced by mechanical loading in an osteoblastic cell line. J Periodontal Res41(2):92-100'' 2006.
49. Siddhivarn C'' Banes A'' Champagne C'' Riche EL'' Weerapradist W'' Offenbacher S. Mechanical loading and Δ12prostaglandin J2 induce bone morphogenetic protein-2'' peroxisome proliferator-activated receptor γ-1'' and bone nodule formation in an osteoblastic cell line. J Periodontal Res 42(5):383-392'' 2007.
50. Stanford CM'' Stevens JW'' Brand RA. Cellular deformation reversibly depresses RT-PCR detectable levels of bone-related mRNA.Journal of Biomechanics 28(12):1419-1427'' 1995.
51. Sun Z'' Tee BC. Molecular variations related to the regional differences in periosteal growth at the mandibular ramus. Anat Rec (Hoboken) 294(1):79-87'' 2011. doi: 10.1002/ar.21293. Epub 2010 Nov 16.
52. Suzuki N'' Yoshimura Y'' Deyama Y'' Suzuki K'' Kitagawa Y. Mechanical stress directly suppresses osteoclast differentiation in RAW264.7 cells. Int J Mol Med 21(3):291-296'' 2008.
53. Tang L'' Lin Z'' Li YM. Effects of different magnitudes of mechanical strain on osteoblasts in vitro. Biochem Biophys Res Commun344(1):122-128'' 2006. Epub 2006 Apr 17.
54. Thompson MS'' Epari DR'' Bieler F'' Duda GN. In vitro models for bone mechanobiology: applications in bone regeneration and tissue engineering. Proc Inst Mech Eng H 224(12):1533-1541'' 2010.
55. Toyoshita Y'' Iida S'' Koshino H'' Hirai T'' Yokoyama A. CYP24 promoter activity is affected by mechanical stress and mitogen-activated protein kinase in MG63 osteoblast-like cells. Nihon Hotetsu Shika Gakkai Zasshi 52(2):171-174'' 2008.
56. Vadiakas GP'' Banes AJ. Verapamil decreases cyclic load-induced calcium incorporation in ROS 17/2.8 osteosarcoma cell cultures.Matrix 12(6):439-447 '' 1992.
57. Visconti LA'' Yen EH'' Johnson RB. Effect of strain on bone nodule formation by rat osteogenic cells in vitro. Archives of Oral Biology 49(6):485-492'' 2004
58. Xiao LW'' Yang M'' Dong J'' Xie H'' Sui GL'' He YL'' Lei JX'' Liao EY'' Yuan X. Stretch-inducible expression of connective tissue growth factor (CTGF) in human osteoblasts-like cells is mediated by PI3K-JNK pathway. Cell Physiol Biochem 28(2):297-304'' 2011. Epub 2011 Aug 16.
59. Yamamoto N'' Fukuda K'' Matsushita T'' Matsukawa M'' Hara F'' Hamanishi C. Cyclic tensile stretch stimulates the release of reactive oxygen species from osteoblast-like cells. Calcif Tissue Int 76(6):433-8'' 2005.
60. Zhang C'' Liang G'' Zhang Y'' Hu Y. Response to dynamic strain in human periosteal cells grown in vitro. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 23(3):546-550'' 2006.
61. Zhu J'' Zhang X'' Wang C'' Peng X'' Zhang X. Different magnitudes of tensile strain induce human osteoblasts differentiation associated with the activation of ERK1/2 phosphorylation. Int J Mol Sci 9(12):2322-2332'' 2008. Epub 2008 Nov 26.
62. Ziambaras K'' Lecanda F'' Steinberg TH'' Civitelli R. Cyclic stretch enhances gap junctional communication between osteoblastic cells. J Bone Miner Res 13(2):218-28'' 1998.
- Adam RM'' Roth JA'' Cheng HL'' Rice DC'' Khoury J'' Bauer SB'' Peters CA'' Freeman MR. Signaling through PI3K/Akt mediates stretch and PDGF-BB-dependent DNA synthesis in bladder smooth muscle cells. J Urol 169(6):2388-2393'' 2003.
- Alibin CP'' Kopilas MA'' Anderson HD. Suppression of cardiac myocyte hypertrophy by conjugated linoleic acid: role of peroxisome proliferator-activated receptors α and γ. J Biol Chem 283(16):10707-10715'' 2008. Epub 2008 Feb 18.
- Anderson HD'' Wang F'' Gardner DG. Role of the epidermal growth factor receptor in signaling strain-dependent activation of the brain natriuretic peptide gene. J Biol Chem 279(10):9287-9297'' 2004.
- Baba HA'' Stypmann J'' Grabellus F'' Kirchhof P'' Sokoll A'' Schafers M'' Takeda A'' Wilhelm MJ'' Scheld HH'' Takeda N'' Breithardt G'' Levkau B. Dynamic regulation of MEK/Erks and Akt/GSK-3β in human end-stage heart failure after left ventricular mechanical support: myocardial mechanotransduction-sensitivity as a possible molecular mechanism. Cardiovascular Research59(2):390-399'' 2003.
- Boateng SY'' Belin RJ'' Geenen DL'' Margulies KB'' Martin JL'' Hoshijima M'' de Tombe PP'' Russell B. Cardiac dysfunction and heart failure are associated with abnormalities in the subcellular distribution and amounts of oligomeric muscle LIM protein.Am J Physiol Heart Circ Physiol 292(1):H259-H269'' 2007.
- 6. Boateng SY'' Lateef SS'' Mosley W'' Hartman TJ'' Hanley L'' Russell B. RGD and YIGSR synthetic peptides facilitate cellular adhesion identical to that of laminin and fibronectin but alter the physiology of neonatal cardiac myocytes. Am J Physiol Cell Physiol 288(1):C30-C38'' 2005.
- Boateng SY'' Senyo SE'' Qi L'' Goldspink PH'' Russell B. Myocyte remodeling in response to hypertrophic stimuli requires nucleocytoplasmic shuttling of muscle LIM protein. J Mol Cell Cardiol 47(4):426-35'' 2009. Epub 2009 Apr 17.
- Boerma M'' van der Wees CG'' Vrieling H'' Svensson JP'' Wondergem J'' van der Laarse A'' Mullenders LH'' van Zeeland AA. Microarray analysis of gene expression profiles of cardiac myocytes and fibroblasts after mechanical stress'' ionising or ultraviolet radiation. BMC Genomics 6(1):6'' 2005.
- Blaauw E'' van Nieuwenhoven FA'' Willemsen P'' Delhaas T'' Prinzen FW'' Snoeckx LH'' van Bilsen M'' van der Vusse GJ.Stretch-induced hypertrophy of isolated adult rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol 299(3):H780-H787'' 2010. Epub 2010 Jul 16.
- Cao L'' Gardner DG. Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 25(2):227-234'' 1995.
- Choudhary R'' Palm-Leis A'' Scott RC 3rd'' Guleria RS'' Rachut E'' Baker KM'' Pan J. All-trans retinoic acid prevents development of cardiac remodeling in aortic banded rats by inhibiting the renin-angiotensin system. Am J Physiol Heart Circ Physiol 294(2):H633-H644'' 2008. Epub 2007 Dec 21.
- de Jonge HW'' Dekkers DH'' Tilly BC'' Lamers JM. Cyclic stretch and endothelin-1 mediated activation of chloride channels in cultured neonatal rat ventricular myocytes. Clin Sci (Lond) 103 Suppl 48:148S-151S'' 2002.
- Espinoza-Derout J'' Wagner M'' Shahmiri K'' Mascareno E'' Chaqour B'' Siddiqui MA. Pivotal role of cardiac lineage protein-1 (CLP-1) in transcriptional elongation factor P-TEFb complex formation in cardiac hypertrophy. Cardiovasc Res 75(1):129-138'' 2007. Epub 2007 Mar 28.
- Fldes G'' Mioulane M'' Wright JS'' Liu AQ'' Novak P'' Merkely B'' Gorelik J'' Schneider MD'' Ali NN'' Harding SE. Modulation of human embryonic stem cell-derived cardiomyocyte growth: a testbed for studying human cardiac hypertrophy J Mol Cell Cardiol50(2):367-376'' 2011. Epub 2010 Nov 1.
- Funari BJ'' Witt MR'' Clause KM'' Keller BB'' Tobita K'' Ralphe JC. The impact of energy substrate on contractile performance in a neonatal rat engineered cardiac tissue model [abstract]. Pediatric Academic Societies Annual Meeting'' Toronto'' Canada'' 2007.
- Gardner DG'' Newman ED'' Nakamura KK'' Nguyen KP. Endothelin increases the synthesis and secretion of atrial natriuretic peptide in neonatal rat cardiocytes. Am J Physiol Endocrinol Metab 261:E177-E182'' 1991.
- Gupta S'' Sen S. Myotrophin-kB DNA interaction in the initiation process of cardiac hypertrophy. Biochimica et Biophysica Acta (BBA)/Molecular Cell Research 1589(3):247-260'' 2002.
- Harada M'' Saito Y'' Nakagawa O'' Miyamoto Y'' Ishikawa M'' Kuwahara K'' Ogawa E'' Nakayama M'' Kamitani S'' Hamanaka I'' Kajiyama N'' Masuda I'' Itoh H'' Tanaka I'' Nakao K. Role of cardiac nonmyocytes in cyclic mechanical stretch-induced myocyte hypertrophy. Heart Vessels Suppl 12:198-200'' 1997.
- Heineke J'' Ruetten H'' Willenbockel C'' Gross SC'' Naguib M'' Schaefer A'' Kempf T'' Hilfiker-Kleiner D'' Caroni P'' Kraft T'' Kaiser RA'' Molkentin JD'' Drexler H'' Wollert KC. Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proc Natl Acad Sci U S A 102(5):1655-1660'' 2005.
- Hilfiker-Kleiner D'' Kaminski K'' Kaminska A'' Fuchs M'' Klein G'' Podewski E'' Grote K'' Kiian I'' Wollert KC'' Hilfiker A'' Drexler H. Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia'' pressure overload'' and neurohumoral activation. Circulation 109(18):2227-2233'' 2004.
- Husse B'' Sopart A'' Isenberg G. Cyclical mechanical stretch-induced apoptosis in myocytes from young rats but necrosis in myocytes from old rats. Am J Physiol Heart Circ Physiol 285:1521-1527'' 2003.
- Koitabashi N'' Arai M'' Kogure S'' Niwano K'' Watanabe A'' Aoki Y'' Maeno T'' Nishida T'' Kubota S'' Takigawa M'' Kurabayashi M. Increased connective tissue growth factor relative to brain natriuretic peptide as a determinant of myocardial fibrosis. Hypertension 49(5):1120-1127'' 2007. Epub 2007 Mar 19.
- Lal H'' Verma SK'' Golden HB'' Foster DM'' Smith M'' Dostal DE. Stretch-induced regulation of angiotensinogen gene expression in cardiac myocytes and fibroblasts: opposing roles of JNK1/2 and p38α MAP kinases. J Mol Cell Cardiol 45(6):770-778'' 2008. Epub 2008 Sep 26.
- Lal H'' Verma SK'' Smith M'' Guleria RS'' Lu G'' Foster DM'' Dostal DE. Stretch-induced MAP kinase activation in cardiac myocytes: differential regulation through β1-integrin and focal adhesion kinase. J Mol Cell Cardiol 43(2):137-147'' 2007. Epub 2007 May 24.
- Lateef SS'' Boateng S'' Ahluwalia N'' Hartman TJ'' Russell B'' Hanley L. Three-dimensional chemical structures by protein functionalized micron-sized beads bound to polylysine-coated silicone surfaces. J Biomed Mater Res A 72(4):373-380'' 2005.
- Lateef SS'' Boateng S'' Hartman TJ'' Crot CA'' Russell B'' Hanley L. GRGDSP peptide-bound silicone membranes withstand mechanical flexing in vitro and display enhanced fibroblast adhesion. Biomaterials 23(15):3159-3168'' 2002.
- Liang F'' Atakilit A'' Gardner DG. Integrin dependence of brain natriuretic peptide gene promoter activation by mechanical strain. J Biol Chem 275(27):20355-20360'' 2000.
- Liang F'' Gardner DG. Autocrine/paracrine determinants of strain-activated brain natriuretic peptide gene expression in cultured cardiac myocytes. J Biol Chem 273(23):14612-14619'' 1998.
- Liang F'' Gardner DG. Mechanical strain activates BNP gene transcription through a p38/NF-κB-dependent mechanism. J Clin Invest104(11):1603-1612'' 1999.
- Liang F'' Kovacic-Milivojevic B'' Chen S'' Cui J'' Roediger F'' Intengan H'' Gardner DG. Signaling mechanisms underlying strain-dependent brain natriuretic peptide gene transcription. Can J Physiol Pharmacol 79(8):640-645'' 2001.
- Liang F'' Lu S'' Gardner DG. Endothelin-dependent and -independent components of strain-activated brain natriuretic peptide gene transcription require extracellular signal regulated kinase and p38 mitogen-activated protein kinase. Hypertension 35(1 Pt 2):188-192'' 2000.
- Liang F'' Wu J'' Garami M'' Gardner DG. Mechanical strain increases expression of the brain natriuretic peptide gene in rat cardiac myocytes. J Biol Chem 272(44):28050-28056'' 1997.
- Liang YJ'' Lai LP'' Wang BW'' Juang SJ'' Chang CM'' Leu JG'' Shyu KG. Mechanical stress enhances serotonin 2B receptor modulating brain natriuretic peptide through nuclear factor-κB in cardiomyocytes. Cardiovasc Res 72(2):303-12'' 2006.
- Lindahl GE'' Chambers RC'' Papakrivopoulou J'' Dawson SJ'' Jacobsen MC'' Bishop JE'' Laurent GJ. Activation of fibroblast procollagen α1(I) transcription by mechanical strain is transforming growth factor-β-dependent and involves increased binding of CCAAT-binding factor (CBF/NF-Y) at the proximal promoter. J Biol Chem 277(8):6153-6161'' 2002.
- Malhotra R'' D’Souza KM'' Staron ML'' Birukov KG'' Bodi I'' Akhter SA. G alpha(q)-mediated activation of GRK2 by mechanical stretch in cardiac myocytes: the role of protein kinase C. J Biol Chem 285(18):13748-13760'' 2010. Epub 2010 Mar 1.
- Marin TM'' Clemente CF'' Santos AM'' Picardi PK'' Pascoal VD'' Lopes-Cendes I'' Saad MJ'' Franchini KG. Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways. Circ Res 103(8):813-824'' 2008. Epub 2008 Aug 28.
- Miller CE'' Donlon KJ'' Toia L'' Wong CL'' Chess PR. Cyclic strain induces proliferation of cultured embryonic heart cells. In Vitro Cell Dev Biol Anim 36(10):633-639'' 2000.
- Nadruz W Jr'' Corat MA'' Marin TM'' Guimaraes Pereira GA'' Franchini KG. Focal adhesion kinase mediates MEF2 and c-Jun activation by stretch: role in the activation of the cardiac hypertrophic genetic program. Cardiovasc Res 68(1):87-97'' 2005.
- Palm-Leis A'' Singh US'' Herbelin BS'' Olsovsky GD'' Baker KM'' Pan J. Mitogen-activated protein kinases and mitogen-activated protein kinase phosphatases mediate the inhibitory effects of all-trans retinoic acid on the hypertrophic growth of cardiomyocytes. J Biol Chem 279(52):54905-54917'' 2004.
- Pan J'' Singh US'' Takahashi T'' Oka Y'' Palm-Leis A'' Herbelin BS'' Baker KM. PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol 202(2):536-553'' 2005.
- Persoon-Rothert M'' van der Wees KG'' van der Laarse A. Mechanical overload-induced apoptosis: a study in cultured neonatal ventricular myocytes and fibroblasts. Mol Cell Biochem 241(1-2):115-24'' 2002.
- Pikkarainen S'' Tokola H'' Kerkela R'' Ilves M'' Makinen M'' Orzechowski HD'' Paul M'' Vuolteenaho O'' Ruskoaho H. Inverse regulation of preproendothelin-1 and endothelin-converting enzyme-1β genes in cardiac cells by mechanical load. Am J Physiol Regul Integr Comp Physiol 290(6):R1639-R1645'' 2006.
- Pikkarainen S'' Tokola H'' Kerkela R'' Majalahti-Palviainen T'' Vuolteenaho O'' Ruskoaho H. Endothelin-1-specific activation of B-type natriuretic peptide gene via p38 mitogen-activated protein kinase and nuclear ETS factors. J Biol Chem278(6):3969-3975'' 2003.
- Pikkarainen S'' Tokola H'' Majalahti-Palviainen T'' Kerkela R'' Hautala N'' Bhalla SS'' Charron F'' Nemer M'' Vuolteenaho O'' Ruskoaho H. GATA-4 is a nuclear mediator of mechanical stretch-activated hypertrophic program. J Biol Chem 278(26):23807-23816'' 2003.
- Pimentel DR'' Amin JK'' Xiao L'' Miller T'' Viereck J'' Oliver-Krasinski J'' Baliga R'' Wang J'' Siwik DA'' Singh K'' Pagano P'' Colucci WS'' Sawyer DB. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 89(5):453-460'' 2001.
- Prante C'' Milting H'' Kassner A'' Farr M'' Ambrosius M'' Schn S'' Seidler DG''Banayosy AE'' Krfer R'' Kuhn J'' Kleesiek K'' Gtting C. Transforming growth factor β1-regulated xylosyltransferase I activity in human cardiac fibroblasts and its impact for myocardial remodeling. J Biol Chem 282(36):26441-26449'' 2007. Epub 2007 Jul 16.
- Rubbens MP'' Driessen-Mol A'' Boerboom RA'' Koppert MM'' van Assen HC'' TerHaar Romeny BM'' Baaijens FP'' Bouten CV.Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues.Ann Biomed Eng 37(7):1263-1272'' 2009. Epub 2009 May 5.
- Ruwhof C'' van Wamel AE'' Egas JM'' van der Laarse A. Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts. Mol Cell Biochem 208(1-2):89-98'' 2000.
- Ruwhof C'' van Wamel AE'' van der Valk LJ'' Schrier PI'' van der Laarse A. Direct'' autocrine and paracrine effects of cyclic stretch on growth of myocytes and fibroblasts isolated from neonatal rat ventricles. Arch Physiol Biochem 109(1):10-17'' 2001.
- Ruwhof C'' van Wamel JT'' Noordzij LA'' Aydin S'' Harper JC'' van der Laarse A. Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytes. Cell Calcium 29(2):73-83'' 2001.
- Senyo SE'' Koshman YE'' Russell B. Stimulus interval'' rate and direction differentially regulate phosphorylation for mechanotransduction in neonatal cardiac myocytes. FEBS Lett 581(22):4241-4247'' 2007. Epub 2007 Aug 8.
- Shyu KG'' Ko WH'' Yang WS'' Wang BW'' Kuan P. Insulin-like growth factor-1 mediates stretch-induced upregulation of myostatin expression in neonatal rat cardiomyocytes. Cardiovascular Research 68(3):405-414'' 2005.
- Sil P'' Gupta S'' Young D'' Sen S. Regulation of myotrophin gene by pressure overload and stretch. Mol Cell Biochem 262(1-2):79-89'' 2004.
- Simmons CA'' Nikolovski J'' Thornton AJ'' Matlis S'' Mooney DJ. Mechanical stimulation and mitogen-activated protein kinase signaling independently regulate osteogenic differentiation and mineralization by calcifying vascular cells. Journal of Biomechanics 37(10):1531-1541'' 2004.
- Skurk C'' Izumiya Y'' Maatz H'' Razeghi P'' Shiojima I'' Sandri M'' Sato K'' Zeng L'' Schiekofer S'' Pimentel D'' Lecker S'' Taegtmeyer H'' Goldberg AL'' Walsh K. The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem 280(21):20814-20823'' 2005.
- Swildens J'' de Vries AA'' Li Z'' Umar S'' Atsma DE'' Schalij MJ'' van der Laarse A. Integrin stimulation favors uptake of macromolecules by cardiomyocytes in vitro. Cell Physiol Biochem 26(6):999-1010'' 2010. Epub 2011 Jan 4.
- Tobita K'' Garrison JB'' Keller BB. Differential effects of cyclic stretch on embryonic ventricular cardiomyocyte and non-cardiomyocyte orientation. Edited by Clark EB'' Nakazawa M'' Takao A. Blackwell Futura Publishing:177-179'' 2005.
- Tomanek RJ'' Zheng W. Role of growth factors in coronary morphogenesis. Tex Heart Inst J 29(4):250-254'' 2002.
- Tornatore TF'' Dalla Costa AP'' Clemente CF'' Judice C'' Rocco SA'' Calegari VC'' Cardoso L'' Cardoso AC'' Gonalves A Jr'' Franchini KG. A role for focal adhesion kinase in cardiac mitochondrial biogenesis induced by mechanical stress. Am J Physiol Heart Circ Physiol 300(3):H902-H912'' 2011. Epub 2010 Dec 10.
- Torsoni AS'' Constancio SS'' Nadruz W'' Jr.'' Hanks SK'' Franchini KG. Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res 93(2):140-147'' 2003.
- Torsoni AS'' Marin TM'' Velloso LA'' Franchini KG. RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol Heart Circ Physiol 289(4):H1488-H1496'' 2005.
- Tsai CT'' Chiang FT'' Tseng CD'' Yu CC'' Wang YC'' Lai LP'' Hwang JJ'' Lin JL. Mechanical stretch of atrial myocyte monolayer decreases sarcoplasmic reticulum calcium adenosine triphosphatase expression and increases susceptibility to repolarization alternans. J Am Coll Cardiol 58(20):2106-2115'' 2011.
- Tulloch NL'' Muskheli V'' Razumova MV'' Korte FS'' Regnier M'' Hauch KD'' Pabon L'' Reinecke H'' Murry CE. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47-59'' 2011. Epub 2011 May 19.
- Tyagi SC'' Lewis K'' Pikes D'' Marcello A'' Mujumdar VS'' Smiley LM'' Moore CK. Stretch-induced membrane type matrix metalloproteinase and tissue plasminogen activator in cardiac fibroblast cells. J Cell Physiol 176(2):374-382'' 1998.
- van Kesteren CA'' Saris JJ'' Dekkers DH'' Lamers JM'' Saxena PR'' Schalekamp MA'' Danser AH. Cultured neonatal rat cardiac myocytes and fibroblasts do not synthesize renin or angiotensinogen: evidence for stretch-induced cardiomyocyte hypertrophy independent of angiotensin II. Cardiovascular Research 43(1):148-156'' 1999.
- van Wamel AJ'' Ruwhof C'' van der Valk-Kokshoom LE'' Schrier PI'' van der Laarse A. The role of angiotensin II'' endothelin-1 and transforming growth factor-β as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem 218(1-2):113-124'' 2001.
- van Wamel AJ'' Ruwhof C'' van der Valk-Kokshoorn LJ'' Schrier PI'' van der Laarse A. Stretch-induced paracrine hypertrophic stimuli increase TGF-β1 expression in cardiomyocytes. Mol Cell Biochem 236(1-2):147-153'' 2002.
- van Wamel JE'' Ruwhof C'' van der Valk-Kokshoorn EJ'' Schrier PI'' van der Laarse A. Rapid gene transcription induced by stretch in cardiac myocytes and fibroblasts and their paracrine influence on stationary myocytes and fibroblasts. Pflugers Arch439(6):781-788'' 2000.
- Wang BW'' Hung HF'' Chang H'' Kuan P'' Shyu KG. Mechanical stretch enhances the expression of resistin gene in cultured cardiomyocytes via tumor necrosis factor-α. Am J Physiol Heart Circ Physiol 293(4):H2305-H2312'' 2007. Epub 2007 Jun 15.
- Watson CJ'' Phelan D'' Xu M'' Collier P'' Neary R'' Smolenski A'' Ledwidge M'' McDonald K'' Baugh J. Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-β mediated fibrosis. Fibrogenesis Tissue Repair 5(1):9'' 2012.
- Wei CC'' Chen Y'' Powell LC'' Zheng J'' Shi K'' Bradley WE'' Powell PC'' Ahmad S''
- Ferrario CM'' Dell’Italia LJ. Cardiac kallikrein-kinin system is upregulated in chronic volume overload and mediates an inflammatory induced collagen loss. PLoS One 7(6):e40110'' 2012. Epub 2012 Jun 29.
- Xi YT'' Bai XJ'' Wu GR'' Ma AQ. Centrifugal force stretcher a new of in vitro
- mechanical cell stimulator. Sheng Li Xue Bao 56(3):419-423'' 2004.
- Yokoyama T'' Sekiguchi K'' Tanaka T'' Tomaru K'' Arai M'' Suzuki T'' Nagai R. Angiotensin II and mechanical stretch induce production of tumor necrosis factor in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 276:H1968-H1976'' 1999.
- Zheng W'' Seftor EA'' Meininger CJ'' Hendrix MJ'' Tomanek RJ. Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-β. Am J Physiol Heart Circ Physiol 280(2):H909-H917'' 2001.
- Zhou C'' Ziegler C'' Birder LA'' Stewart AF'' Levitan ES. Angiotensin II and stretch activate NADPH oxidase to destabilize cardiac Kv4.3 channel mRNA. Circ Res 98(8):1040-1047'' 2006.
76. Ali MH'' Pearlstein DP'' Mathieu CE'' Schumacker PT. Mitochondrial requirement for endothelial responses to cyclic strain: implications for mechanotransduction. Am J Physiol Lung Cell Mol Physiol 287(3):L486-L496'' 2004.
77. Awolesi MA'' Sessa WC'' Sumpio BE. Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. J Clin Invest 96(3):1449-1454'' 1995.
78. Azuma N'' Duzgun SA'' Ikeda M'' Kito H'' Akasaka N'' Sasajima T'' Sumpio BE. Endothelial cell response to different mechanical forces. J Vasc Surg 32(4):789-794'' 2000.
79. Baker PN'' Stranko CP'' Davidge ST'' Davies PS'' Roberts JM. Mechanical stress eliminates the effects of plasma from patients with preeclampsia on endothelial cells. Am J Obstet Gynecol 174(2):730-6'' 1996.
80. Brophy CM'' Mills I'' Rosales O'' Isales C'' Sumpio BE. Phospholipase C: a putative mechanotransducer for endothelial cell response to acute hemodynamic changes. Biochem Biophys Res Com |